Diện tích parabol

Công thức tính nhanh diện tích hình phẳng giới hạn bởi parabol và trục hoành - thầy Đặng Thành Nam

Trích đề thi và bài giảng khoá PRO X Luyện thi THPT Quốc Gia 2019 Môn Toán tại neftekumsk.com

Đăng kí khoá học tại đây:https://www.neftekumsk.com/khoa-hoc/xem/khoa-hoc-pro-x-luyen-thi-thpt-quoc-gia-mon-toan-2019-kh633150433.html

Diện tích hình phẳng $S$ giới hạn bởi prabol $y=a{{x}^{2}}+bx+c$ và trục hoành, với ${{b}^{2}}-4ac>0$ là ${{S}^{2}}=\frac{{{({{b}^{2}}-4ac)}^{3}}}{36{{a}^{4}}}=\frac{{{\Delta }^{3}}}{36{{a}^{4}}}.$

CÔNG THỨC 1: DIỆN TÍCH HÌNH PHẲNG GIỚI HẠN BỞI PARABOL VÀ ĐƯỜNG THẲNG

CÔNG THỨC 2: DIỆN TÍCH HÌNH PHẲNG GIỚI HẠN BỞI ĐƯỜNG CONG BẬC BA VÀ ĐƯỜNG THẲNG

CÔNG THỨC 3: DIỆN TÍCH HÌNH PHẲNG GIỚI HẠN BỞI ĐƯỜNG CONG TRÙNG PHƯƠNG VÀ ĐƯỜNG THẲNG

Câu 57.

Bạn đang xem: Diện tích parabol

Cho đường tròn tâm $O,$ bán kính $R=\sqrt{2}$ và một parabol đỉnh $O$ cắt đường tròn tại hai điểm phân biệt $A,B.$ Gọi $S$ là diện tích hình phẳng giới hạn bởi parabol và dây cung $AB.$ Hỏi giá trị lớn nhất của $S$ là ?

A. $\frac{3}{2}.$

B. $\pi -\sqrt{3}.$

C. $\frac{4}{3}.$

D. $\frac{\sqrt{6}}{2}.$

Câu 58. Kí hiệu $S(m)$ là diện tích hình phẳng giới hạn bởi đường thẳng $y=mx$ và parabol $y={{x}^{2}}+2x-2.$ Hỏi giá trị nhỏ nhất của $S(m)$ là ?

A. 4.

B. $2\sqrt{2}.$

C. $\frac{8\sqrt{2}}{3}.$

D. 2.

Câu 59. Có tất cả bao nhiêu giá trị thực của tham số $m$ thoả mãn phần hình phẳng hữu hạn giới hạn bởi đồ thị của hàm số $y={{x}^{3}}-3m{{x}^{2}}-4x+{{m}^{2}}+1$ và trục hoành gồm hai miền; miền nằm trên trục hoành và miền nằm dưới trục hoành có diện tích bằng nhau ?

A. 3.

B. 1.

Xem thêm: BảNg Bổ Trợ MùA 6 2021 Mới Nhất, Tin Tức Bảng Bổ Trợ Mùa 6 2021 Mới Nhất

C. 2.

D. 0.

Câu 60. Biết đồ thị hàm số $y={{x}^{4}}-3\sqrt{2}{{x}^{2}}+m$ cắt trục hoành tại bốn điểm phân biệt. Gọi ${{S}_{1}}$ là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y={{x}^{4}}-3\sqrt{2}{{x}^{2}}+m,$ trục hoành và phần phía trên trục hoành; ${{S}_{2}}$ là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y={{x}^{4}}-3\sqrt{2}{{x}^{2}}+m,$ trục hoành và phần phía dưới trục hoành. Biết ${{S}_{1}}={{S}_{2}}.$ Mệnh đề nào sau đây đúng ?

$0

Câu 61. Gọi $(H)$ là diện tích hình phẳng giới hạn bởi parabol $y=6x-{{x}^{2}}$ và trục hoành. Các đường thẳng $y=m,y=n\text{ }(0

A. $T=405.$

B. $T=407.$

C. $T=409.$

D. $T=403.$

*

*

Với $m$ là tham số thực thay đổi, hỏi diện tích hình phẳng giới hạn bởi parabol $y={{x}^{2}}+1$ và đường thẳng $y=mx+2$ nhỏ nhất là ?

A. $\frac{64}{9}.$

B. $\frac{8}{3}.$

C. $\frac{16}{3}.$

D. $\frac{4}{3}.$ .

*

*

Gồm 4 khoá luyện thi duy nhất và đầy đủ nhất phù hợp với nhu cầu và năng lực của từng đối tượng thí sinh:

Bốn khoá học X trong gói COMBO X 2019có nội dung hoàn toàn khác nhau và có mục đich bổ trợ cho nhau giúp thí sinh tối đa hoá điểm số.

Quý thầy cô giáo, quý phụ huynh và các em học sinh có thể mua Combo gồm cả 4 khoá học cùng lúc hoặc nhấn vào từng khoá học để mua lẻ từng khoá phù hợp với năng lực và nhu cầu bản thân.